

The role and character of fluids in rare-metal deposits: insights from Thor Lake, NWT.

Iain M. Samson

Department of Earth and Environmental Sciences

University of Windsor

References

Much of the data presented in this talk comes from the thesis work of Yonggang Feng and Justin Hoyle:

Feng, Y., 2014, Hydrothermal Geochemistry and Mineralizing Processes in the T Zone, Thor Lake Rare-element Deposit, Northwest Territories. PhD Thesis, University of Windsor. 341 p.

Hoyle, J., 2017, Rare-Earth Elements in the Nechalacho Deposit, NWT: Hydrothermal Controls on Mineralogy and Fractionation, MSc Thesis, University of Windsor. 91 p.

Partly published as:

Feng, Y., Samson, I.M., 2015, Replacement Processes involving high field strength elements in the T Zone, Thor Lake rare-metal deposit, Northwest Territories. Canadian Mineralogist. v.53, p.31-60.

The summary diagrams at the end come from :

Samson, I.M., 2013, Fluid inclusion studies of rare earth element deposits (*abstract*). Geological Society of America, 125th Anniversary Meeting, Denver, Colorado, Oct. 27-30.

"Rare Metals"

H ¹															He		
Li ³	Be	Lanthanides (Ce-Lu) Lanthanons (La-Lu + Y)									B^5	C ₆	N ⁷	0 ⁸	F ⁹	10 Ne	
Na	Mg		$\begin{bmatrix} 13 & 14 & 15 & 16 & 17 \\ Al & Si & P^{15} & S^{16} & Cl & A \end{bmatrix}$												Ar ¹⁸		
K ¹⁹	Ca	21 Sc	Ti ²²	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	27 Co	²⁸ Ni	Cu	Zn 30	Ga ³¹	Ge	As 33	Se ³⁴	Br ³⁵	Kr ³⁶
Rb ³⁷	³⁸ Sr	Y ³⁹	Zr ⁴⁰	41 Nb	42 Mo	43 TC	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	Ag ⁴⁷	⁴⁸ Cd	49 In	Sn	Sb	Te ⁵²	53 	Xe ⁵⁴
Cs	Ba	57 La	72 Hf	73 Ta	W ⁷⁴	Re	05 76	77 Ir	Pt ⁷⁸	⁷⁹ Au	Hg ⁸⁰	TI ⁸¹	Pb ⁸²	Bi	P0	At ⁸⁵	Rn ⁸⁶
87 Fr	Ra ⁸⁸	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Uuu	112 Uub		114 Uuq				

LREE \longleftarrow HREE

Ce 58	Pr Pr	60 Nd	Pm ⁶¹	Sm ⁶²	Eu ⁶³	64 Gd	Tb ⁶⁵	66 Dy	67 Ho	Er	69 Tm	Yb	71 Lu
Th	91 Pa	U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Classification of Elements Based on Charge and Radius

Hydrothermal REE

Alkaline-rock related rare metal deposits

- What is the evidence for this?
- Are rare metals present in the fluids?
- What concentrations?
- What controls enrichment?

Thor Lake Location

modified after Sheard et al., 2012; Davidson, 1982

Modified after Möller and Williams-Jones (2012)

Nechalacho Layered Series: aegirine-nepheline-sodalite-biotite syenites

The Nechalacho Layered Suite

Möller & Williams-Jones, 2016, J. Pet.

The Nechalacho Deposit

Möller & Williams-Jones, 2016, J. Pet.

Nechalacho Deposit: Cumulates

Basal Zone Pseudomorphs

Mineralized zones: highly altered

Eudialyte Na₄(Ca,**Ce**)₂(Fe²⁺,Mn,Y)ZrSi₈O₂₂(OH, Cl)₂ zircon ZrSiO₄ fergusonite LnNbO₄ columbite (Fe,Mn)(Nb,Ta)₂O₆

allanite (Ca,Na)₂Ln₃Si₆O₁₈·2H₂O bastnäsite Ln(CO₃)F monazite LnPO₄ (LREE-enriched) xenotime (Y,Ln)PO₄ (HREE-enriched)

eudialyte pseudomorphs

Courtesy of E. Sheard

Heavily altered Basal Zone

secondary assemblages

T Zone

Möller & Williams-Jones, 2016, J. Pet.

Pegmatitic Textures Lower Imtermediate Zone (LIZ)

Fine-grained qtz

Ab

formerly nepheline

A more altered version

Silicification and Li metasomatism

Polylithionite-Mgt-Bt-Aeg.....

Qtz

$Ply = Polylithionite: KLi_2Al(Si_4O_{10})(F,OH)_2$

C

zircon ZrSiO₄ columbite (Fe,Mn)(Nb,Ta)₂O₆

bastnäsite $Ln(CO_3)F$ monazite $LnPO_4$ xenotime (Y,Ln)PO₄

```
phenakite Be<sub>2</sub>SiO<sub>4</sub>
polylithionite KLi<sub>2</sub>AlSi<sub>4</sub>O<sub>10</sub>(F,OH)<sub>2</sub>
```

How do the rare-metal minerals occur? are they primary or secondary?

REE-minerals in pseudomorphs

Bst = bastnäsite (REECO₃F), LREE-rich mineral

Also: monazite, xenotime

Zircon in pseudomorphs

Phenakite = Be_2SiO_4 = Be metsamomatism

Phk

Qtz

What was the character of the fluids and did they contain rare-metals?

Does the fluid record bearout the mineralogical complexity?

Approach = fluid inclusions

How can we tie the fluid inclusions to the rare-metal minerals?

fluid inclusions restricted to pseudomorphs

Type 1

Phk

fluid inclusions restricted to pseudomorphs

pseudomorphs defined by fluid inclusions

Oriented inclusions in bastnäsite

Isolated/growth zones in xenotime

Fluid Inclusion Assemblage (FIA) Classification

Trapped zircon in fluid inclusions

Ice melting temperatures

Homogenization temperatures: $T_h LV \rightarrow L$

Complex growth and fluid history

Evolution of T and salinity

What about fluid chemistry?

Energy-dispersive spectroscopy of decrepitates

EDS analysis of decrepitates

LA-ICP-MS analysis of fluid inclusions: Na, K, Ca

Rare-metal concentrations

REE concentrations

Two Populations

Reasons for Enrichment?: Aegirine and Mica replacement

Strange Lake, Quebec/Labrador

Photos courtesy of J. Gagnon

A magmatic source? Li and Be?

Questions: what roles do fluids play?

- Primary vs secondary concentration and enrichment?
 - Secondary at Thor Lake
- What types of fluids are capable of mobilizing significant rare metals?
 - Aqueous, low to moderate T and salinity
 - Low CO₂ and CH₄
- What is the evidence for this?
 - Ubiquitous replacement of primary minerals by hydrothermal assemblages
 - Primary fluid inclusions in pseudomorphs with rare-metal minerals, in raremetal minerals, and in growth zones in quartz
- Are rare metals present in the fluids?
 - yes
- What concentrations?
 - 10s → 1000s ppm
 - Highest concentrations: ~ 150 to 250 °C and from ~ 20 to 25 wt. % NaCl_{equiv}
- What controls enrichment?
 - Replacement of mafic minerals and micas

Salinity of fluids in rare-metal systems

XCO₂ of fluids in rare metal systems

Bayan Obo: CO_2 from carbonate dissolution (Smith & Henderson, 2000) $5CaCO_3 + 3H_3PO_4 + HF \rightleftharpoons Ca_5(PO_4)_3F + 5CO_2 + 5H_2O$ *calcite apatite*

