DIVEX, 27th May, 2015

The Origin and Evolution of REE Mineralisation in the NYF Pegmatites of the Strange Lake Pluton

» McGill

By

A.E. Williams-Jones O. Vasyukova, K. Siegel and A.Gysi

Department of Earth and Planetary Sciences McGill University, Montreal, Canada

The Strange Lake Deposit a Potential HREE Producer

REE Reserves

www.questrareminerals.com

Domain	Tonnes (x1000t)	LREO	HREO + Y	TREO + Y	H:T Ratio
INDICATED					
Enriched Zone	20,020	0.72	0.72	1.44	50%
Granite	258,108	0.55	0.33	0.89	38%
Total	278,128	0.57	0.36	0.93	39%
INFERRED					
Granite	214,351	0.55	0.30	0.85	35%

Projected Annual Revenue from REE Production

\$758 million per year, dominantly from dysprosium

The View at Strange Lake

The Proterozoic Strange Lake Peralkaline Granite Pluton (1240 Ma)

Quenched Hypersolvus Granite Cut by Subsolvus Granite

Dark inclusions in subsolvus granite represent quenched hypersolvus granite

Controls on Alkali Feldspar Solid Solution

Hypersolvus granite (perthite) evolved to subsolvus granite (K-feldspar, albite) because temperature dropped or more likely PH₂O increased.

The Fluorite Breccia

The Strange Lake Pegmatite Ores

PegmatiteborderGittinsiteTitanite

 $(CaZrSi_2O_7)$ $(CaTiSiO_5)$

Pegmatite core

REE Minerals

Fluorite

The Secondary Nature of the REE Mineralisation

Allanite (Ca, Ce,Y)₂(AIFe)₃(SiO₄)₃OH Kainosite $Ca_2(Y,REE)_2Si_4O_{12}(CO_3).H_2O$

Distribution of REE and Zr in Pegmatite

Melt Inclusions in Hypersolvus Granite

Melt Inclusions are evident by their spherical shape. They vary from being silicate-only, to fluorite-bearing to fluorite-only.

> Gagarinite-(Y) NaCaY(F,Cl)₆ Elpidite NaCaY(F,Cl)₆

Melt Inclusions after Heating (to 900 °C) and Quenching

Fluoride-bearing Melt Inclusions after Heating and Quenching Transmitted Light SEM Image

1 –Silicate melt2 –Ca-fluoride melt;3 –REE-fluoride~3 wt.% Zr~10 wt.% REEmelt; ~47 wt.% REE

Macroscopic Fluoride Melt Inclusion in Hypersolvus Granite (25 wt% REE!)

Fine-grained REE-rich intergrowth + Fluorite

Fluorbritholite-(Ce) + fluocerite-(Ce) + bastnäsite-(Ce) R+ Fluorite

Fluorbritholite-(Ce) + bastnäsite R-(Ce) + Fluorite

Macroscopic Fluoride Melt Inclusion

Chevkinite-(Ce) $(Ce,Ca)_4(FeMg)_2(TiFe)_3Si_4O_{22}$ Fluorbritholite-(Ce) $(Ce,Ca)_5(SiO_4)_3F$

Transition zone

Acidic Alteration and REE Mobilisation

Autometasomatism lead to acidic alteration by HCI-HFbearing fluids that destroyed the primary mineralogy, creating porosity

REE mobilised, replacing earlier minerals and filling vugs

Flc - fluocerite (REEF₃)

The Pegmatites Stewed in their own Juices

Model of REE Accumulation

"These elements [the rare earths] perplex us in our researches, baffle us in our speculations and haunt us in our very dreams. They stretch like an unknown sea before us, mocking, mystifying and murmuring strange revelations and possibilities."

(Sír William Crookes, February 16th, 1887)